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Abstract
The complete datasets are a prerequisite for sustainable analyses, robust an-

alytics and unbiased interpretation of results. Missing values in a survey occur
when no data value is stored for the variable in an observation. Missing data
can have a significant effect on the conclusions that can be drawn from the data.
Direct ascription is the process of replacing missing data with predicted values.
The aim of this work is to describe an approach to direct ascription of missing
categorical values in survey research data based both on the assumption that
values in a data set are missing at random and on the implementation of the
correspondence analysis.
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1. Introduction
One of the biggest challenges in marketing survey research studies is dealing

with “blank spots” in the data i.e. places where respondents refrain from pro-
viding correct answering due to various reasons. Some of these include difficulty
to find correct answer, too long questionnaires, unwillingness to disclose sensitive
personal information (income, age etc.), too many options to choose from etc.

Since most statistical analysis methods assume the absence of missing data
and are only able to include observations in which every variable is measured,
every company developing and implementing marketing survey research studies
is in need of a robust mathematical approach that could impute incomplete data
sets so that analyses which require complete observations can appropriately use
all the information present in a dataset without missingness. In this case the
level bias and incorrect uncertainty estimates will be avoided.

Until the 1970s, missing values were handled primarily by editing. Rubin
developed a framework of inference from incomplete data that remains in use
today [7]. The formulation of the expectation-maximization (EM) algorithm
made it feasible to compute maximum likelihood (ML) estimates in many missing-
data problems [1]. Rather that deleting or filling in incomplete cases, ML treats
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the missing data as random variables to be removed from (i.e., integrated out
of) the likelihood function as if they were never sampled. Many examples of
EM were described by Little and Rubin [4]. Their book also documented the
shortcomings of case deletion and single imputation, arguing for explicit models
over informal procedures. About the same time, in [8] Rubin introduced the idea
of multiple imputation (MI), in which each missing value is replaced by two or
more simulated values prior to analysis [3]. Creation of MIs was facilitated by
computer technology and new methods for Bayesian simulation discovered in the
late 1980s [9]. ML and MI are now becoming standard because of implementation
in free and commercial software [10].

2. Definition of the problem

In 2014 a market intelligence and consulting company has performed a study
among 600 customers of the biggest supermarket chains in Bulgaria. The method-
ology used random sampling procedure among population in Bulgaria’s top 8
cities. The variables were measured with different type of scales: nominal, ordi-
nal and continues in some of the cases. As a result the final dataset contained
a large number of missing cases and “no answers” across variables ranging from
5% to around 50% of all respondents interviewed. Since all methods for stimu-
lating response rate were exhausted the company is looking for a computational
algorithm that could use the information from already completed cases and re-
cursively assign values to missing data in every variable controlling for the type of
scale and distribution of “real” values. For this study we assume that all missing
values are of type: Missing At Random (MAR).

3. Introduction to correspondence analysis

Correspondence analysis (CA) represents yet one more method for analyzing
data in contingency tables and can be regarded as a special kind of canonical
correlation analysis [2]. The main purpose of CA is to reveal the structure of
complex data matrix by replacing the raw data with a more simple data matrix
without losing essential information. CA makes it possible to present the results
visually, that is, as points within a space, which facilities interpretation. CA is a
method especially for analysis of large contingency tables. The technique is a tool
to analyze the association between 2 or more categorical variables by representing
the categories of the variables as points in 2D or 3D.

Correspondence analysis was developed in France and is more commonly
used in Europe than in North America. Correspondence analysis is a descrip-
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tive/exploratory technique designed to analyze two-way and multi-way tables
containing measures of correspondence between the row and column variables.
The results produced by correspondence analysis provide information which is
similar to that produced by principal components or factor analysis. They allow
one to explore the structure of the categorical variables included in the table.
Correspondence analysis seeks to represent the relationships among the cate-
gories of row and column variables with a smaller number of latent dimensions.
It produces a graphical representation of the relationships between the row and
column categories in the same space.

Correspondence analysis was initially proposed as an inductive method for an-
alyzing linguistic data. From a philosophy standpoint, correspondence analysis
simultaneously processes large sets of facts, and contrasts them in order to dis-
cover global order; and therefore it has more to do with synthesis (etymologically,
to synthesize means to put together) and induction. On the other hand, analy-
sis and deduction (viz., to distinguish the elements of a whole; and to consider
the properties of the possible combinations of these elements) have become the
watchwords of data interpretation. It has become traditional now to speak of data
analysis and correspondence analysis, and not data synthesis or correspondence
synthesis.

Correspondence analysis is applied to two-way tables of counts. CA can be
seen as a special case of canonical correlation analysis. It seeks scores for the
rows and columns which are maximally correlated. As in principal component
analysis, the aim of correspondence analysis is to reduce the dimensionality of a
data matrix in order to visualize it in a subspace of low dimensionality, commonly
two- or three- dimensional ([2], [5], [6]).

To summarize the theory of CA, first divide the I × J data matrix, denoted by
N, by its grand total n to obtain the so-called correspondence matrix P = N/n.
Let the row and column marginal totals of P be the vectors r and c respectively,
that is the vectors of row and column masses r = P1, c = P⊤1, where the
notation 1 is used for a vector of ones of length that is appropriate to its use.
Let Dr = diag(r) and Dc = diag(c) be the diagonal matrices of row and column
masses.

The computational algorithm to obtain coordinates of the row and column
profiles with respect to principal axes, using the singular-value decomposition
(SVD), is as follows:

(1) Calculate the matrix of standardized residuals: S = D
−

1

2
r (P− rc)D

−
1

2
c .

(2) Calculate the SVD: S = UDαV
⊤, where U⊤U = V⊤V = I.
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(3) Principal coordinates of rows: F = D
−

1

2
r UDα.

(4) Principal coordinates of columns: G = D
−

1

2
c VDα.

(5) Standard coordinates of rows: X = D
−

1

2
r U.

(6) Standard coordinates of columns: Y = D
−

1

2
c V.

The total variance of the data matrix is measured by the inertia which is
calculated on relative observed and expected frequencies.

The rows of the coordinate matrices in (3)–(6) above refer to the rows or
columns of the original table. The columns of these matrices refer to the prin-
cipal axes, or dimensions, of the solution. The row and column principal coor-
dinates are scaled in such a way that FDrF⊤ = GDcG

⊤ = D2
α
. The standard

coordinates have weighted sum-of-squares equal to 1: XDrX
⊤ = YDcY

⊤ = I.
Package ca in R implements CA. The output of function ca() is structured

as a list-object. The ca() output contains the eigenvalues and percentages of
explained inertia for all possible dimensions. Values for the rows and columns
(masses, chi-squared distances of points to their average, inertias and standard
coordinates) are also given.

Eigenvalues and relative percentages of explained inertia are given for all avail-
able dimensions. Additionally, cumulated percentages and a scree plot are shown.
The items given in rows and columns of summary() include the principal coordi-
nates for the first two dimensions (k = 1 and k = 2). Squared correlations and
contributions for the points are displayed next to the coordinates. Notice that
the quantities in these tables are multiplied by 1000 (e.g., the coordinates and
masses).

The rows and columns of a data table analyzed by CA are called active points.
These are the points that determine the orientation of the principal axes.

It happens that there are additional rows and columns of data that are not the
primary data of interest but that are useful in interpreting features discovered
in the primary data. Any additional row or column of a data matrix can be
positioned on an existing map. These additional rows or columns that are added
to the map are called supplementary points.

Supplementary variables have no impact on the computation. They are pro-
jected onto the solution space afterwards. Thus, contributions are not applicable
for this case. Squared correlations as a measure of how well a point is represented
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by the axes are still meaningful for the case of supplementary variables and thus
are included in the output.

The results from CA can be visualized in the following way. The graphical
solution can be restricted to two dimensions–first principal axis to be displayed
horizontally (the x-axis) and the second principal axis to be displayed vertically
(the y-axis). Usually the first two dimensions are plotted. However, eigenvalues
are known for all possible dimensions. The supplementary variables can be added
to the plot with a different symbol.

A three-dimensional display of the CA can also be created. This type of display
offers the advantage that one can zoom and navigate using the mouse.

4. Results from CA

CA is performed on the provided survey dataset from GemSeek, Bulgaria.
For this aim a data submatrix without missing data is extracted. This matrix
contains 264 rows and 4 columns.

The shopping behavior is cross-tabulated according to how often clients shop
food and grocery products in supermarket (six levels: daily, OnceTwiceAWeek,
OnceEveryFewDays, OnceEvery2-4weeks, OnceEvery1-3months,
OnceEvery3-6months) and most important factors for clients when deciding from
which hypermarket to shop from (16 levels). The contingency table is reproduced
in Table 1.

In Table 2 two supplementary rows are added. First supplementary row is
“household’s monthly combined income” and it contains five possible answers
(Less5K, 5K-10K, 10K-15K, 15K-20K, 25K-30K, MoreThan30K, IDoNotWant-
ToDeclare). Second supplementary row is the age with the following levels: 20-24,
25-29, 30-34, 35-39, 40-44, 45-50.

One cannot visualize the profiles exactly, since they are points situated in a
four-dimensional space. CA identifies a low-dimensional subspace, which approx-
imately contains the profiles. It reduces the dimensionality of the cloud of points
so that we can visualize their relative positions. However, CA gives the coordi-
nates of row and column points for all possible dimensions. This gives us the key
to the interpretation of the association between the points.

The algorithm for direct ascription of missing categorical values is based on
the association between levels of categorical variables. All associations deduced
in this task are presented in Table 3, Table 4, and Table 5.
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We have detected strong connection between the following levels (see Table 3):

• Level 30-34 of Q2 (How old are you?) and level 4 (Brands available) of Q9.

• Level 25-29 of Q2 (How old are you?) and level 6 (Store spaciousness and
organization) of Q9.

It means that if in an observation the level of Q9 is missing (NA) and the
level of Q2 is 30–34 then NA values of Q9 can be estimated (imputed) by value
4 (Brands available) and vice versa – the missing values of Q2 can be estimated
by 30-34 when the value of Q9 is 4. If the level of Q9 is missing (NA) and the
level of Q2 is 25-29, then NA values of Q9 can be estimated by value 6 (Store
spaciousness and organization) and vice versa.

Table 4 and Table 5 present the following possible imputations:

• If the level of Q9 is missing (NA) and the level of Q28 is 5 000-10 000, then
NA values of Q9 can be estimated (imputed) by value 4 (Brands available)
and vice versa.

Table 3. Relationships between some levels of Q2 and Q9

Q2: How old are you? Q9: Which of these factors is most important to
you when deciding from which hypermarket to shop
from?

30-34 4 (Brands available)

25-29 6 (Store spaciousness and organization)

Table 4. Relationships between some levels of Q28 and Q9

Q28: What is your house-
holds monthly combined
income?

Q9: Which of these factors is most important to
you when deciding from which hypermarket to shop
from?

5 000-10 000 HRK 4 (Brands available)

Table 5. Relationship between some levels of Q4 and Q9

Q4: How often do you
shop food and grocery
products in supermarket/
hypermarket?

Q9: Which of these factors is most important to
you when deciding from which hypermarket to shop
from?

daily 9 (Product promotions like buy one get one free)

OnceTwiceAWeek 2 (Diversity of goods sold in the store)

OnceEveryFewDays 8 (Benefits from loyalty program)
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• If the level of Q9 is missing (NA) and the level of Q4 is daily, then NA
values of Q9 can be estimated (imputed) by value 9 (Product promotions
like buy one get one free) and vice versa.

• If the level of Q9 is missing (NA) and the level of Q4 is OnceTwiceAWeek,
then NA values of Q9 can be estimated (imputed) by value 2 (Diversity of
goods sold in the store) and vice versa.

• If the level of Q9 is missing (NA) and the level of Q4 is OnceEveryFewDays,
then NA values of Q9 can be estimated (imputed) by value 8 (Benefits from
loyalty program) and vice versa.

New data submartix without missing data can be extracted from the dataset,
provided by GemSeek. New couples of associations can be discovered using the
same approach.

5. Final words

A typical example in the survey research is the use of ubiquitous chisquare
test for association in a cross-tabulation. This test is not a tool detecting which
parts of the table are responsible for this association.

Our approach is based on the association between levels of categorical vari-
ables.

Our algorithm for direct ascription of missing categorical values is based on the
association between row points and column points discovered by correspondence
analysis.

An open question is how to extract association between combinations of levels
of categorical variables. The following features of the correspondence analysis:
the percentages of inertia and squared correlations should also be involved in a
machine learning algorithm.
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